Tidyverse
Cheat Sheet

yDiv crash course
September 2022
Emilio Berti

emilio.berti@idiv.de

. tibble tidyselect

tibble(x, y)
Create a new tibble with columns x and y.

as_tibble(x)
Cast object x into a tibble.

Use as_tibble(x) if x is a matrix, a list, or a data.frame.

Reading files

read_csv(file)
Read a comma-separated file.

read_delim(file, delim = ...)
Read a ...-separated file.

Use the option show_col types = FALSE to silence
printing of column types.

Writing files
write_csv(x, file)
Wirite table x as a comma-separated file.

write_delim(x, file , delim = ...)
Write table x as a ...-separated file.

pivot_wider(df, names_from = x, values_from =y )
Make a long table a wide one by adding a hew column
for each value in x with entries the values of y.

pivot_longer(df, cols = ..., hames_to = x,
values to=y)

Make a wide table a long one by creating two new col-
umn X, with levels the column names selected in cols,
and y, with their values.

cols = ... takes tidyselect arguments.

everything()
Select all columns.

contains(”...”)
Select all columns matching pattern ...

starts_with(” ... ”)
Select all columns starting with pattern ...

ends_with(”...”)
Select all columns ending with pattern ...

tidyselect examples

select(df, starts_with(”Average”))
Select all columns that start with the string "Average”.

pivot_wider(df, cols = contains(”Site”))
Select all columns that contain the string "Site”.

where

cols = where(...)
Select all columns where statement ... is TRUE.

select(df, where(is.numeric))
Select all numeric columns.

mutate(df, across(where(is.numeric), scale))
Scale all numeric columns.

T tgyr W pumr

map(x, function)
Apply a function to each element of x and return a list.

map_dbl(x, function)
Apply a function to each element of x and return a numeric vector.

map_chr(x, function)
Apply a function to each element of x and return a character vector.

These two syntaxes are equivalent:
map(z, round)
map(z, ~round(.x))

The function can be passed as a function or as a formula, in which case
x refers to the first input and .y to the second.

map2(x, y, function)
Apply a function to each pair of elements x and y and return a list.

map2(x, y, ~round(.x, .y))
Round x by y decimal digits.

The names .x and .y are conventions independent of the name of the
inputs. E.g. map2(z, w, ~round(.x, .y)) is correct.

Many inputs

pmap(list(...) , function)
Apply a function to each group on inputs ... and return a list.

pmap(list(x, y, z, w) ~..1 ~ .2 + .3 " ..4)
Equivalent to x¥ + z".

When there are more than two inputs (always passed as a list), then the
convetion is to use ..1 for the first input, ..2 for the second, etc.

Both map2 and pmap can return numeric vectors instead of lists
(map2_dbl() and pmap_dbl()) or character vectors (map2_chr() and
pmap_chr()).

Other return types for purrr map families are logical vectors (map_lgl()),
integer vectors (map_int()), and dataframes (map_df())



dplyr

Modify columns
mutate(df, x = ... )
Create new column x.

transmute(df, x = ..., y)
Create new column x and retain only columns x and y.

Use transmute() when you want to create new columns and retain only some
columns. This is equivalent to a mutate() followed by a select().

Select columns

select(df, x, y)
Select columns x and y.

select(df, —x)
Select all columns except x.

Filter rows

filter (df, condition)
Retain only rows based on condition.

filter (df, x > 5).
Select rows where x > 5.

filter (df, x > 5,y < 3)
Select rows where x > 5 AND y < 3.

filter (df, x > 5|y < 3)
Select rows where x > 50RYy < 3.

Grouping

group_by(df, x)
Group observation by the grouping variable x.

Usually, the grouping variable is categorical, e.g. a string or a factor.
Arrange rows

arrange(df, x)
Arrange rows with increasing values of x.

Use the option decreasing = TRUE to sort with decreasing values of x.

Extract one column
pull(df, x)
Extract column x and return it as a vector.
Summarize observations

summarize(df, ...)
Create a new table containing the summary statistic ...

summarize(df, Average = mean(x)).
Summarize all observation to give the average value of x.

If the table is grouped, a row is returned for each group:
df %>% group_by(x)% >% summarize(Avg = mean(y)).
Return average value of y for each level of x.

Sample from tables
slice_head(df, n = ...)
Retain only the first ... rows.

slice_tail (df, n = ...)
Retain only the last ... rows.

slice_sample(df, n = ...)
Retain only ... random rows.
Use the option prop = ..., instead of n = ..., to retain a proportion of the rows.

Join two tables

left_join (x, y, by = 2)
Join table x with table y according to a grouping variable z and retain only z
values that occurr in x.

inner_join(x, y, by = z)
Join table x with table y according to a grouping variable z and retain only z
values that occurr in both x and y.

full_join (x, y, by = 2)
Join table x with table y according to a grouping variable z and retain all z values.

If the grouping variable has different name in the two tables (e.g. z and w), you
must specify the comparison.

left_join (x, y, by = c('2' = 'w'"))

Join x and y where z = w.



