Running our first ENM/SDM

Emilio Berti

We can now model the ecological niche and the distribution of the species Podarcis muralis.

Species niche (ENM)

We start by loading the species and climate data that we prepared in the previous section.

d <- read.csv("../data/occurrences.csv")
head(d, n = 3)

wc2.1_10m_bio_1 wc2.1_10m_bio_12 wc2.1_10m_bio_13 wc2.1_10m_bio_14

1 14.709969 510 60 20

2 11.454646 775 89 44

3 8.854438 933 106 60
wc2.1_10m_bio_15 wc2.1_10m_bio_4 wc2.1_10m_bio_5 wc2.1_10m_bio_6 cell

1 25.68323 686.3660 32.04650 2.11375 620998

2 21.44033 589.9808 25.82825 -0.33375 621014

3 18.08941 578.0707 22.92975 -2.12900 618853

X y occ

1 -0.4166667 42.08333 1
2 2.2500000 42.08333 1
3 2.0833333 42.25000 1

The column names wc2.1_10m_bio_<id> means that this is data from WorldClim (wc) at a
resolution of 10 arc-minutes (10m) for bioclimatic variables (<id>). Bioclimatic variables are
generally highly correlated with each others and only a subset of them should be used for train
an ecological niche model. Variable selection can be performed with the usual statistical tricks
or, even better, can be informed by the biology of the species. Because I do not know the
biology of the species, I build several competing ENMs and test which one is best using the
Akaike information criterion (AIC).

The first model considers only average temperature (BI001) and total precipitation (BI012) to
train an ENM using glm().



enm_01_12 <- glm(
occ ~ poly(wc2.1_10m_bio_1, 2, raw = TRUE) + poly(wc2.1_10m_bio_12, 2, raw = TRUE),
data = d,
family = "binomial"

)

We can test how well these variables explain the distribution of the species by building another
ENM with different variables and comparing it with the model above. For example, we can use
the minimum temperature of the coldest month (BI006) and the precipitation of the driest
month (BI014) instead.

enm_06_14 <- glm(
occ ~ poly(wc2.1_10m_bio_6, 2, raw = TRUE) + poly(wc2.1_10m_bio_14, 2, raw = TRUE),
data = d,
family = "binomial"

)

We can compared the two models by AIC, with the best most having the lowest AIC.

AIC(enm_01_12, enm_06_14)

df AIC
enm 01 12 5 4289.915
enm_06_14 5 4030.867

The model with the second set of variables explain the distribution of the species better than
the first model.

Looking at AIC or other statistical metrics provides, however, only a measure of goodness of fit.
Because we have clear assumptions backed by theory on how the shape of species niches should
look like, we can see if the inferred niches by the two models fit our assumptions. Specifically,
our assumption of concave-down niches requires that all quadratic coefficients are negative. We
thus inspect the quadratic terms for both ENMs.

message ("ENM-1")
beta_01 12 <- coef(enm_01_12)
beta2_01_12 <- beta_01_12[grepl(")2", names(beta_01_12))]
names (beta2_01_12) <- gsub(
"poly\\(I\\)2|, 2, raw = TRUE|wc2[.]1_10m_",

names (beta2_01_12)



)
beta2_01_12

bio_1 bio_12
-1.779033e-02 -5.388666e-06

message ("ENM-2")
beta_06_14 <- coef(enm_06_14)
beta2_06_14 <- beta_06_14[grepl(")2", names(beta_06_14))]
names (beta2_06_14) <- gsub(
"poly\\(I\\)2|, 2, raw = TRUE|wc2[.]1_10m_",
names (beta2_06_14)
)
beta2_06_14

bio_6 bio_14
-0.0115759369 -0.0006470727

Because of coefficients of ENM-2 are both negative, ENM-2 is both statistically supported and
theoretically valid and we can use it for SDMs. Below is the inferred niche of ENM-2.

newd <- expand.grid(

wc2.1_10m_bio_6 = seq(-20, 35, length.out = 3e2),
wc2.1_10m_bio_14 = seq(0, 200, length.out = 3e2)
)
z <- predict(enm_06_14, newdata = newd, type = "response")
z <- matrix(
z,
nrow = length(unique(newd$wc2.1_10m_bio_6)),
ncol = length(unique(newd$wc2.1_10m_bio_14))
)
image (
x = sort(unique(newd$wc2.1_10m_bio_6)),
y = sort(unique(newd$wc2.1_10m_bio_14)),
z = z,
col = hcl.colors(100, "Spectral", rev = TRUE),
xlab = "BIO6", ylab = "BIO14"
)
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Species distribution (SDM)

When using glm(), terra makes it extremely easy to produce a SDM. We first need to load
the raster layers of the bioclimatic variables.

library(terra)
ff <- list.files("../data", pattern = ".tif") # all files with .tif extension
r <- rast(file.path("..", "data", ff))

roi <- ext(-13, 33, 33, 62) # roi of Europe
r <- crop(r, roi) # crop to Europe

The terra function predict (<raster>, model) is all we need.

sdm <- predict(r, enm_06_14, type = "response")
plot(sdm, col = hcl.colors(100, "Spectral", rev = TRUE))
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Binary projections

And we obtained the projected suitability of the species for Europe. Note that this is a
continuous value, in this case representing the probability of detecting the species given climate.
If we are interested in a binary map, e.g. showing the climatic range of the species, we need to
binarize this continuous value into 0/1. There are several approaches to achieve this, but here
we consider only the approach using the true skill statistics (TSS), which is one of the most
widely used.

The main idea of the T'SS approach is to pick a threshold value and set the cells of the map
above to 0 if their values if less than this threshold and to 1 otherwise. These 0/1 values are
then compared to the known occurrence of the species to calculate

o The number of occurrences correctly predicted as presences (true positives, TP).

e The number of occurrences incorrectly predicted as absences (false negatives, FN).
o The number of occurrences correctly as absences (true negatives, TN).

e The number of occurrences incorrectly presences (false positives, FP).

TSS is defined as T'SS = (Tgiﬁxigﬁfg P which is a statistic balancing how well the model
performs in predicting both presences and absences. TSS ranges from 0, for a model not better

than random, to 1, for a model with perfect predictions.

If we pick several threshold and calculate the TSS for each of them, the best threshold is the
one that has highest TSS, which is also the T'SS of our model predictions.



# extract the values from the continuous map
suit <- extract(sdm, d[, c("x", "y")], ID = FALSE)[, 1]

# generate a gradient of threshold values
threshold <- seq(0.1, 0.9, by = 0.001)
tss <- rep(NA, length(threshold)) # empty vector for storage

# iterate over threshold values

for (i in seq_along(threshold)) {
p <- ifelse(suit > threshold[i], 1, 0)
TP <- sum(p == 1 & d$occ == 1)
FP <- sum(p == 1 & d$occ == 0)
FN <- sum(p == 0 & d$occ == 1)
TN <- sum(p == 0 & d$occ == 0)
sens <- TP / (TP + FN)
spec <- TN / (TN + FP)
tss[i] <- sens + spec - 1

th <- threshold[which.max(tss)] # best threshold

plot(
threshold, tss,
type = "1", main = pasteO("Highest TSS = ", round(max(tss), 2)),

xlab = "Threshold value", ylab = "TSS"
)
abline(v = th, lty = 2)

# binarize the continuous map
sdm_bin <- ifel(sdm >= th, 1, 0)
plot(sdm_bin, col = c("grey90", "dodgerblue"))
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This binary map is quite incorrect for this species. According to the IUCN (https://www.iucn
redlist.org/species/61550/12514105), this species is found also in most of Italy, all the Balkans,
and part of Turkey, but is not found in the UK, the Low Countries, and most of Germany.


https://www.iucnredlist.org/species/61550/12514105
https://www.iucnredlist.org/species/61550/12514105

Why do we get such bad projections compared to the known range from IUCN? We will answer
this in a next lecture, but my general recommendation is to plot the detection points.

plot(sdm_bin, col = c("grey90", "dodgerblue"))
points(d[d$occ == 1, c("x", "y")], pch = 20, cex = .3)
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The selected detection records are geographically biased and likely the environmental (climatic)
space is not well represented.
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