
GIS And Remote Sensing For Ecologists

Emilio Berti

2024-08-08

2

Contents

Preface 5
Software requirements . 5

A history of GIS 7

1 Projections 9
1.1 Geographic vs Projectes CRS . 9

2 Vectors 11
2.1 Geometries in R . 11
2.2 Create geometry in R interactively 15

3 Rasters 17
3.1 Matrices in R . 17
3.2 Rasters . 18
3.3 Rasters in R . 18
3.4 Raster manipulation . 20
3.5 Raster stacks . 22
3.6 Example: stacks for ecology . 24

4 Overview of the data we will use 27

5 Convert a vector to a raster 33
5.1 Covert a raster to a vector . 35

6 Simple operations on vectors 37
6.1 Perimiter . 37
6.2 Area . 38
6.3 Centroids . 40
6.4 Buffer . 43
6.5 Neighbors of polygons . 44

7 Vector operations 47
7.1 Loading vectors . 47

3

4 CONTENTS

8 Zonal statistics 49
8.1 Zones as a shapefile . 49

9 Mapping 53

Preface

I started learning GIS in 2017 during my PhD. As most of the programming I
know, I learnt it by myself making many mistakes. I still make mistakes, which
means I am still learning. My aim with this course is to be the guide I did
not have when I started learning GIS and that would have saved me some of
the mistakes. This course is intended for newcomers to GIS; experienced users
should definitely look somewhere else (most likely on stackoverflow.com).

The course is divided into three main parts:

1. General introduction to GIS.
2. Fundamentals for GIS analysis.
3. GIS analysis with Google Earth Engine.

Software requirements
In the first part of this course, I will introduce the basic concepts of GIS using R
and Python. For this, I will use the terra package for R and the shapely module
for Python. I will focus more often on R than on python.

In the second part, I will cover the fundamentals of GIS analysis. I will explain
the theory behind it and complement it with examples from actual analyses,
introducing the most common workflows for R and Python. I will use the R
package terra and the Python modules shapely, geopandas, fiona, and plotly.

In the third part, I will focus on Google Earth Engine and explain how to move
heavy GIS analyses on the cloud. This will require a basic understanding of
JavaScript and of Python object-oriented programming, as well as to interface
with GEE using the gee Python module. This part may seem redundant at first
(why should I move my computation on Google servers?), but, as your analyses
expand in scale and need to access several databases, GEE shines as a great
trade-off between complexity and effectiveness.

To install all packages and modules used in this book, you can use the
conda environment management system. The environment file is at
https://github.com/emilio-berti/gis-course/blob/master/conda/gis-course.yml.

5

https://stackoverflow.com
https://docs.conda.io/en/latest
https://github.com/emilio-berti/gis-course/conda/gis-course.yml

6 CONTENTS

conda env create --file=gis-course.yml

A history of GIS

Humans have always been interested in mapping out the Earth. Anaximander
was among the first to publish a map of the known world in the 6th century BC.

Figure 1: Reconstruction of the map of the known world from Anaximander.

It was not until the “Age of Exploration”, where accurate maps could make the
difference between riches and starving at sea, that such Tolkien-like style maps
became more realistic.

Jump forward another 400 years and many major technological advancements
and we get to the Information Age, where cartographic software started to be
developed. GIS comprise both the hardware and the software to collect, store,
manage, and analyze geographic data. Today, there are several GIS hardware
and software that are publicly accessible and that are used in many fields: urban
planning, climate modeling, mining, warfare, etc. It may be surprising for an
ecologist, but current GIS tools are tightly linked to mineral and oil exploration,
such as the European Petroleum Survey Group (EPSG), and to warfare, such
as GPS and GLONASS. Nevertheless, we will use GIS for the well-being of
humanity and stick to biogeographic analyses.

7

8 CONTENTS

Figure 2: A *portolan* map from the Age of Discovery.

Figure 3: An example map produced using QGIS, a free GIS software.

Chapter 1

Projections

A map projection is a 2D representation of the Earth surface. There are
several type of projections, each approximating Earth surface in different ways.
Importantly, each spatial data must have an associated coordinate reference
system (CRS), which defines how the 2D map and the Earth surface are related.
In GIS courses, CRS is usually only briefly discussed or not talked at all. However,
CRS is quite a complicated topic and one that can introduce many errors in your
analysis: if you choose the wrong CRS, then your calculations can be extremely
biased.

I will give only a brief introduction to CRS for two reasons:

1. They are a very complex topic and going into details takes a very long
time.

2. Honestly, I am still figuring out some of the most obscure details of some
CRS and I do not want to say incorrect things.

1.1 Geographic vs Projectes CRS
A geographic CRS is one where locations of points are described by longitude
and latitude, i.e. the angle between the Prime meridian (an almost mythological
creature) and the location and the angle between the Equator and the location,
respectively. The most used geographic CRS is WGS84 (EPSG:4326).

A projected CRS is a system to represent the 3D Earth surface on a plane.
Representing a 3D object into a 2D plane accurately is not possible. Therefore,
projectons always distort a property of the Earth surface, in particular, at least
one of: distance, angular conformity, and area. Projections can be grouped into
types, depending on which property of the Earth surface they do not distort:

• Conformal projections: they correctly represent the angles between points
and, thus, shapes. E.g., ESRI:54004 (Mercator).

9

10 CHAPTER 1. PROJECTIONS

• Equidistant: they correctly represent distances. E.g., ESRI:54002.
• Equal-area: they corretly represent areas. E.g. ESRI:54034.

ESRI stands for Environmental Systems Research Institute, Inc., which is the
company that developed ArcGIS and created a code standard for projections. The
other commonly used standard is maintained by the European Petroleum Survey
Group (EPSG). For instance, World Mercator (conformal) is also EPSG:3395.

A common projected CRS is the Universal Transverse Mercator projection
(conformal), e.g. EPSG:32632. We will talk more about this in a later chapter.
You can find an overview of ESRI and EPSG projections at https://spatialrefer
ence.org/. Wikipedia also has a nice list with the property of each projection:
https://en.wikipedia.org/wiki/List_of_map_projections

https://spatialreference.org/
https://spatialreference.org/
https://en.wikipedia.org/wiki/List_of_map_projections

Chapter 2

Vectors

Vectors (or shapefiles) contain geospatial vector data, also called geometries. A
shapefile has the extension .shp and it is usually accompanied by other files.
Common supplementary files are:

• .shx = the index of the geometries in the data model.
• .dbf = the attributes of the geometries in a table format.
• .prj = the WKT representation of the coordinate reference system.

The core concept of shapefiles is that geographic features are stored using three
fundamental geometry types:

1. Points, defined by coordinates (x, y).
2. Lines, defined by two points and a line interpolating them.
3. Polygons, defiend by several lines.

These three fundamental types can also be “stacked”, e.g. one spatial feature
can be represented by multiple points, lines, and polygons. In this case, we talk
of multipoints, multilines, and multipolygons. The difference between multilines
and polygons is that a polygon inscribe an area of space, that is it creates an
“inside” area and an “outside” one, while multilines do not.

2.1 Geometries in R
Let’s see an exampled in R using the package terra. Remember to load the
package if you did not already: library(terra). In terra, all the hustle that
came with older GIS software has been removed, and geometries can be simply
be created using the vect() function.
xy <- matrix(c(0, 0), ncol = 2)
poi <- vect(xy)
geomtype(poi)

11

12 CHAPTER 2. VECTORS

[1] "points"

This creates our first geometry, a point at the origin. To be meaningful, however,
we must assign a coordinate reference system to our geometry. This can be done
during the initialization itself.
poi <- vect(xy, crs = "EPSG:4326")
poi

class : SpatVector
geometry : points
dimensions : 1, 0 (geometries, attributes)
extent : 0, 0, 0, 0 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)

Geometries can be converted into other types by casting. In terra this has been
made extremely easy. Let’s create some points.
xy <- matrix(seq_len(10), ncol = 2)
pois <- vect(xy, crs = "EPSG:4326")
geomtype(pois)

[1] "points"

And cast them to lines using as.lines().
ls <- as.lines(pois)
geomtype(ls)

[1] "lines"

We may want to cast this to polygons, notice however that these lines do not
inscribe an area of space, i.e. they are not “closed”.
plot(ls)
points(pois, cex = 2)

2.1. GEOMETRIES IN R 13

1 2 3 4 5

6
7

8
9

10

Trying to cast these lines as polygons, will return an empty geometry.
pol = as.polygons(ls)
geomtype(pol)

[1] "none"

To cast lines to polygons, two points must be identical.
xy <- matrix(seq_len(10), ncol = 2)
xy <- rbind(xy, cbind(5, 6)) #add bottom-right point
xy <- rbind(xy, xy[1,]) #add again first point
pois <- vect(xy, crs = "EPSG:4326")
ls <- as.lines(pois)
pol <- as.polygons(ls)
pol

class : SpatVector
geometry : polygons
dimensions : 1, 0 (geometries, attributes)
extent : 1, 5, 6, 10 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)

show it
plot(pol, col = "dodgerblue", alpha = .5)

14 CHAPTER 2. VECTORS

lines(ls, col = "tomato", lw = 3)
points(pois, cex = 3)

1 2 3 4 5

6
7

8
9

10

If you want to cast points to polygons, it is considered best practice to first cast
them to lines and then cast these into polygons (as I just did). Trying to cast
points to polygons directly can introduce errors, if it works at all.

Each geometry has its own set of properties. Points have coordinates:
geom(pois)[, c("x", "y")] #coordinates of points

x y
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
[6,] 5 6
[7,] 1 6

Lines have length:
perim(ls) #length of line

[1] 1509805

2.2. CREATE GEOMETRY IN R INTERACTIVELY 15

And polygons have perimeter and area:
perim(pol) #perimeter of polygon

[1] 1509805

expanse(pol, unit = "km") #area of polygon

[1] 97586.03

Note that lines and polygons also have coordinates, which are the breaking
points of the straight lines, defined by the points:
geom(pol)

geom part x y hole
[1,] 1 1 1 6 0
[2,] 1 1 2 7 0
[3,] 1 1 3 8 0
[4,] 1 1 4 9 0
[5,] 1 1 5 10 0
[6,] 1 1 5 6 0
[7,] 1 1 1 6 0

2.2 Create geometry in R interactively
R terra has a nice feature that allows to draw on a plot and save the resulting
geometry in the environment. This is achieved using the function draw(), which
takes as argument the type of geometry you want to draw (points, line, polygon,
or extent).
plot(pol, col = "dodgerblue3", alpha = .5)
drawing = draw("lines")

And then just left-click on the map. When you are done, right click and the
output will be saved in the variable drawing.

This is very useful when you want to zoom on a region of a map or draw coarse
polygons but don’t want to open a more interactive GIS software, such as QGIS.

16 CHAPTER 2. VECTORS

Chapter 3

Rasters

Because rasters are fundamentally 2D matrices with matadata, it is useful to
understand what is a matrix before jumping straight into the topic. A 2D matrix
A is a mathematical object that can be represented as a grid. The elements Aij

of the matrix A are called its entries. The subscript in Aij indicate the row and
column coordinates of the entries. For example, A1,1 is the element in first row
and first column, while A3,4 is the element in the third row and fourth column.

3.1 Matrices in R
R provides a native support for matrices. In fact, R was designed to work with
matrices, as most statistical models can be represented as operation on matrices.
vals <- seq_len(9)
A <- matrix(vals, byrow = TRUE, nrow = 3, ncol = 3)
A

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

When creating a matrix, there are two import things that are often neglected.
First, by specifying byrow = TRUE, we make sure that the values contained in
vals are inserted into the matrix row-wise, i.e. A1,1 = vals[1], A1,2 = vals[2],
etc. This argument can be omitted if inserting elements column-wise is preferred;
in this case, A2,1 = vals[2], etc..

Second, at least one of ncol or nrow should be specified, or the matrix will have
only one column (column vectors). If you specify only one of the two, R will
infer the other dimension. You can specify both of them and I invite you to do
so for clarity, whenever possible.

17

18 CHAPTER 3. RASTERS

3.2 Rasters

A raster is basically a 2D matrix with associated metadata. The most important
metadata define:

• The spatial extent.
• The spatial resolution.
• The coordinate reference system, crs.

A raster without these three metadata is, in most cases, useless.

3.3 Rasters in R

In R, terra provides all you need to work with rasters. To create a raster, you
can use the rast() function. You can use as input a matrix.
r <- rast(A, crs = "EPSG:4326")
r

class : SpatRaster
dimensions : 3, 3, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0, 3, 0, 3 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : lyr.1
min value : 1
max value : 9

Or a dataframe.
d <- data.frame(

x = rep(seq_len(10), 10), #x coord
y = rep(seq_len(10), each = 10), #y coord
z = seq_len(100) #values

)
r <- rast(d, crs = "EPSG:4326")
plot(r)

3.3. RASTERS IN R 19

2 4 6 8 10

2
4

6
8

10

20

40

60

80

100

rast() is also used to read rasters from files.
r <- rast("some-file.tif")

To write rasters to files, the writeRaster() function is used.
writeRaster(

r, "some-file.tif",
overwrite = TRUE, datatype = "INT4U"

)

The overwrite and datatype arguments are optional, but I strongly recommend
you to always include them. overwrite = TRUE simply make sure that, if the
raster already exists on disk, it is overwritten. terra, by defaults, throw an
error if the file exists and overwrite = FALSE, which can be annoying when
working on servers. datatype specifies the numeric type of the matrix elements.
Available types are signed and unsigned integer and float. You also have to
specify the number of bytes to use for each entry. Available dataype choices are:

• INT1U, unsigned integer of 1 byte: ∈ [0, 28].
• INT2U, unsigned integer of 2 bytes: ∈ [0, 216].
• INT2S, signed integer of 2 bytes: ∈ [−28 + 1, 28].
• INT4U, unsigned integer of 4 bytes: ∈ [0, 232].

20 CHAPTER 3. RASTERS

• INT4S, signed integer of 4 bytes: ∈ [−216 + 1, 216].
• FLT4S, signed floating point (real) number of 4 bytes: ∈ [1.2 · 10−38, 3.4 ·

1038]
• FLT8S, signed floating point (real) number of 8 bytes: ∈ [2.3 · 10−308, 1.7 ·

10308]

You can actually store numbers also outside the range of the numeric types, but
this will come to the cost of precision, so you should try to avoid going outside
ranges. This does not mean that you should always save files as FLT8S, as this
will require more disk space and slow down writing/reading operations. For
example, if you want to store the elevation at global scale with a precision of
one meter, INT2U is the optimal choice, as it is the smallest type that can store
the information.

3.4 Raster manipulation
Rasters can be manipulated in the same way you would do with a matrix. For
example:
r + 10 #add a constant

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : z
min value : 11
max value : 110

2 * r #multiply by a constant

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : z
min value : 2
max value : 200

r ˆ 2 #power

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)

3.4. RASTER MANIPULATION 21

extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : z
min value : 1
max value : 10000

2 * r + 10 #combined addition and multiplication

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : z
min value : 12
max value : 210

You can also add and multiply rasters together:
r + r

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : z
min value : 2
max value : 200
r * r

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : z
min value : 1
max value : 10000

22 CHAPTER 3. RASTERS

3.5 Raster stacks

You can also stack rasters to create 3D stacks. In terra, this is achieved simply
by appending the rasters together:
s <- c(r, -r / 2)
s

class : SpatRaster
dimensions : 10, 10, 2 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
names : z, z
min values : 1, -50.0
max values : 100, -0.5

plot(s)

2 4 6 8 10

2
4

6
8

10

20

40

60

80

100
z

2 4 6 8 10

2
4

6
8

10

−50

−40

−30

−20

−10

z

Stacks are quite useful because you can call vectorized functions on them, e.g.:
plot(mean(s)) #mean

3.5. RASTER STACKS 23

2 4 6 8 10

2
4

6
8

10

5

10

15

20

25

stdev(s)ˆ2 #variance

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : std
min value : 0.5625
max value : 5625.0000

prod(s) #product

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 1, 1 (x, y)
extent : 0.5, 10.5, 0.5, 10.5 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (EPSG:4326)
source(s) : memory
name : prod
min value : -5e+03

24 CHAPTER 3. RASTERS

max value : -5e-01

3.6 Example: stacks for ecology

Imagine you sampled the occurrences for 100 species and want to know the
number of species detected in each cell. The distribution of one species is saved
in the file species-1.tif and may look like this:
r <- rast("species-1.tif")
plot(r)

0 2 4 6 8 10

0
2

4
6

8
10

0
1

You can load all of them at once:
files <- list.files("data/", pattern = "species-")
s <- rast(files)
plot(s[[c(5, 35, 75)]]) #show species 5, 35, and 75

3.6. EXAMPLE: STACKS FOR ECOLOGY 25

0 5 10

0
2

4
6

8
10

0
1

species−5

0 5 10

0
2

4
6

8
10

0
1

species−35

0 5 10

0
2

4
6

8
10

0

species−75

To get the number of species detected in each cell, you simply need to sum across
the stack:
S <- sum(s)
plot(S, col = hcl.colors(minmax(S)["max",] + 1, "Zissou 1"))

26 CHAPTER 3. RASTERS

0 2 4 6 8 10

0
2

4
6

8
10

0
1
2
3
4
5
6

Chapter 4

Overview of the data we will
use

There are some operations that are the staple of GIS. For example: What is
the distance between two features? What is the area of a polygon? What
is the value of a raster at specific locations? To illustrate this with practical
examples, we will use some data that you can find in the data/ folder in the
repo https://github.com/emilio-berti/gis-course.

data/EU/EU.shp contains the polygons of the countries in the European Union:
eu <- vect("data/EU/EU.shp")
plot(eu, col = "#001489", border = "white", lw = 2)

27

https://github.com/emilio-berti/gis-course

28 CHAPTER 4. OVERVIEW OF THE DATA WE WILL USE

0 20

35
40

45
50

55
60

65
70

data/ISTAT/Limiti01012024_g/Reg01012024_g/Reg01012024_g_WGS84.shp
contains the polygons of the regions (administrative division below the state) of
Italy:
reg <- vect("data/ISTAT/Limiti01012024_g/Reg01012024_g/Reg01012024_g_WGS84.shp")
plot(

reg, "DEN_REG",
col = hcl.colors(length(reg), "Set 2")

)

29

5e+05 1e+06

4e
+

06
42

00
00

0
46

00
00

0
5e

+
06

52
00

00
0

Abruzzo
Basilicata
Calabria
Campania
Emilia−Romagna
Friuli−Venezia Giulia
Lazio
Liguria
Lombardia
Marche
Molise
Piemonte
Puglia
Sardegna
Sicilia
Toscana
Trentino−Alto Adige
Umbria
Valle d'Aosta
Veneto

data/ISTAT/Limiti01012024_g/ProvCM01012024_g/ProvCM01012024_g_WGS84.shp
contains the polygons of the provinces (administrative division between commune
and region) of Italy:
italy <- vect("data/ISTAT/Limiti01012024_g/ProvCM01012024_g/ProvCM01012024_g_WGS84.shp")
plot(

italy, "DEN_UTS",
col = colors()[sample(seq_along(colors()), length(italy))]

)

30 CHAPTER 4. OVERVIEW OF THE DATA WE WILL USE

5e+05 1e+06

4e
+

06
42

00
00

0
46

00
00

0
5e

+
06

52
00

00
0

Agrigento
Alessandria
Ancona
Aosta
Arezzo
Ascoli Piceno
Asti
Avellino
Bari
Barletta−Andria−Trani
Belluno
Benevento
Bergamo
Biella
Bologna
Bolzano
Brescia
Brindisi
Cagliari
Caltanissetta
Campobasso
Caserta
Catania
Catanzaro
Chieti
Como
Cosenza
Cremona
Crotone
Cuneo
Enna
Fermo
Ferrara
Firenze
Foggia
Forli'−Cesena
Frosinone
Genova
Gorizia
Grosseto
Imperia
Isernia
L'Aquila
La Spezia
Latina
Lecce
Lecco
Livorno
Lodi
Lucca
Macerata
Mantova
Massa Carrara
Matera
Messina
Milano
Modena
Monza e della Brianza
Napoli
Novara
Nuoro
Oristano
Padova
Palermo
Parma
Pavia
Perugia
Pesaro e Urbino
Pescara
Piacenza
Pisa
Pistoia
Pordenone
Potenza
Prato
Ragusa
Ravenna
Reggio di Calabria
Reggio nell'Emilia
Rieti
Rimini
Roma
Rovigo
Salerno
Sassari
Savona
Siena
Siracusa
Sondrio
Sud Sardegna
Taranto
Teramo
Terni
Torino
Trapani
Trento
Treviso
Trieste
Udine
Varese
Venezia
Verbano−Cusio−Ossola
Vercelli
Verona
Vibo Valentia
Vicenza
Viterbo

data/wc2.1_10m_bio_1.tif is the mean annual temperature (averaged across
several decades) at 10 minute resolution from WorldClim. I cropped this for
Europe (excluding parts of Scandinavia to save disk space):
bio1 <- rast("data/wc2.1_10m_bio_1.tif")
plot(bio1, col = hcl.colors(100, "Zissou 1"))

31

−10 0 10 20 30 40

30
35

40
45

50
55

60

0

5

10

15

20

25

32 CHAPTER 4. OVERVIEW OF THE DATA WE WILL USE

Chapter 5

Convert a vector to a raster

In terra, a vector can be converted to a raster by using rasterize(x, y), where
x is the vector to convert to a raster and y is a template raster from which the
metadata is re-used for x:
bio1 <- rast("data/wc2.1_10m_bio_1.tif") #load raster template
eu <- vect("data/EU/EU.shp") #load zone layer
r_eu <- rasterize(eu, bio1)
plot(r_eu, col = "#001489")

33

34 CHAPTER 5. CONVERT A VECTOR TO A RASTER

−10 0 10 20 30 40

30
35

40
45

50
55

60

1

rasterize() can also take the optional argument field, which is used to assign
to the cells values:
r_eu <- rasterize(eu, bio1, field = "NAME_ENGL")
plot(r_eu, col = hcl.colors(length(eu), "Dynamic"))
lines(eu)

5.1. COVERT A RASTER TO A VECTOR 35

−10 0 10 20 30 40

30
35

40
45

50
55

60

Austria
Belgium
Bulgaria
Croatia
Cyprus
Czechia
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Latvia
Lithuania
Luxembourg
Malta
Netherlands
Poland
Portugal
Romania
Slovakia
Slovenia
Spain
Sweden

5.1 Covert a raster to a vector
as.polygons() can be used to convert a raster into a vector. By default,
the new polygon will be dissolved, i.e. the vector will have only one geometry
for each value of the raster; this can be turned off by specifying dissolve =
FALSE, but usually you want them dissolved. Moreover, the default behavior
of as.polygons() is to round rasters that have many different values, to avoid
creating too many polygons; this can be turned off by specifying round = FALSE.
Let’s have a look at some of these options:
#default is round = TRUE an dissolve = TRUE
length(as.polygons(bio1, round = FALSE))

[1] 40477

length(as.polygons(bio1, dissolve = FALSE))

[1] 40856

length(as.polygons(bio1, round = FALSE, dissolve = FALSE))

[1] 40856

v_bio1 <- as.polygons(bio1)
length(v_bio1)

36 CHAPTER 5. CONVERT A VECTOR TO A RASTER

[1] 30

plot(v_bio1, col = hcl.colors(length(v_bio1), "Zissou 1"))

−10 0 10 20 30 40

30
35

40
45

50
55

60

Chapter 6

Simple operations on vectors

6.1 Perimiter

perim() is used to get the perimiter of a vector:
eu <- vect("data/EU/EU.shp")
eu[["perimeter"]] <- perim(eu) / 1e3 #in km
plot(

eu, "perimeter",
type = "continuous",
col = hcl.colors(length(eu), "Dark Mint")

)

37

38 CHAPTER 6. SIMPLE OPERATIONS ON VECTORS

0 20

35
40

45
50

55
60

65
70

2000

4000

6000

8000

(Look at Greece with all that islands!)

6.2 Area

expanse() is used to calculate the area of vectors:
eu[["area"]] <- expanse(eu, unit = "km")
plot(

eu, "area",
type = "continuous",
col = hcl.colors(length(eu), "Dark Mint")

)

6.2. AREA 39

0 20

35
40

45
50

55
60

65
70

100000

200000

300000

400000

500000

(Sweden is smaller than what it looks)

Bonus:
mapped_islands <- table(disagg(eu)$NAME_ENGL)[eu$NAME_ENGL] #some magic
with(as.data.frame(eu), plot(

perimeter, area,
pch = 20, cex = 2,
col = "dodgerblue3"

))
text(

x = eu$perimeter, y = eu$area,
labels = eu$NAME_ENGL,
adj = c(0.5, -1),

)
text(

x = eu$perimeter, y = eu$area,
labels = paste(mapped_islands, "islands"),
adj = c(0.5, 2),

)

40 CHAPTER 6. SIMPLE OPERATIONS ON VECTORS

0 2000 4000 6000 8000

0e
+

00
2e

+
05

4e
+

05

perimeter

ar
ea

Austria
Belgium

Bulgaria

Cyprus

Czechia

FinlandGermany

Denmark

Greece

France
Spain

Estonia Croatia
Hungary

Italy

IrelandLithuania

Luxembourg

Latvia

Malta
Netherlands

Portugal

Romania

Poland

Sweden

Slovenia
Slovakia

1 islands
1 islands

1 islands

1 islands

1 islands

54 islands20 islands

29 islands

93 islands

13 islands
12 islands

12 islands 35 islands
1 islands

33 islands

10 islands1 islands

1 islands

1 islands

2 islands
10 islands

1 islands

1 islands

2 islands

64 islands

1 islands
1 islands

(I call this relationship the island factor)

6.3 Centroids

The centroid is the point defined as the arithmetic mean position of all the points
in the surface of the polygon. For instance, the centroids of a square polygon
it’s its center:
p <- vect(

matrix(
c(0, 0, 1, 0, 1, 1, 0, 1, 0, 0), byrow = TRUE, ncol = 2

)
)
p <- as.lines(p)
p <- as.polygons(p)
centr <- centroids(p)
plot(p, col = "dodgerblue", alpha = .5)
points(centr, col = "tomato", cex = 3)

6.3. CENTROIDS 41

0 0.5 1

0
0.

2
0.

4
0.

6
0.

8
1

But the centroid
of a complex polygon may not even be inside it:
p <- vect(matrix(c(0, 0, 1, 0, 1, 1, 0.9, 0.1, 0, 0), byrow = TRUE, ncol = 2))
p <- as.lines(p)
p <- as.polygons(p)
centr <- centroids(p)
plot(p, col = "dodgerblue", alpha = .5)
points(centr, col = "tomato", cex = 3)

42 CHAPTER 6. SIMPLE OPERATIONS ON VECTORS

0 0.5 1

0
0.

2
0.

4
0.

6
0.

8
1

Neverthelss, cen-
troids can someitmes be useful to get an idea of a process at large spatial
scales. For instance, the latitude of the centroids of the countries in the EU is
somewhat their average latitude:
eu_centr <- centroids(eu)
eu <- vect("data/EU/EU.shp")
plot(eu, col = "#001489", border = "white", lw = 1)
points(eu_centr, col = "#FFDD00", cex = 2, pch = 3, lw = 2)

6.4. BUFFER 43

0 20

35
40

45
50

55
60

65
70

6.4 Buffer

To buffer a polygon is to extend its perimeter in all directions at the same time,
i.e. orthogonally to the tangent line of each point. Buffering is achieved in terra
using buffer(x, width). It is easier to see it than to explain it.
b <- buffer(eu, 1e5) #100km for visualizing it
plot(eu, col = "#001489")
lines(b, col = "tomato", lw = 2)

44 CHAPTER 6. SIMPLE OPERATIONS ON VECTORS

0 20

35
40

45
50

55
60

65
70

6.5 Neighbors of polygons
In terra, neighbors of a polygon are obtained using adjacent(). The output of
adjacent() is a matrix, either of two columns with the first being the IDs of
the n countries or of n × n representing the adjacency matrix of the countries. I
like more the adjacency matrix, therefore:
neigh <- as.list(rep(NA, length(eu))) #initialize empty list
names(neigh) <- eu$NAME_ENGL
adj <- adjacent(eu, pairs = FALSE)

then a convoluted code to show the number of neighbors
for (i in seq_along(eu)) {

ctr <- eu[adj[i,] == 1,]
if(length(ctr) > 0) {

neigh[[i]] <- unique(ctr$NAME_ENGL)
} else {

neigh[[i]] <- "No neighbours"
}

}
eu$neigh <- sapply(neigh, length)
eu$neigh[sapply(neigh, \(x) all(x == "No neighbours"))] <- 0

6.5. NEIGHBORS OF POLYGONS 45

plot(
eu, "neigh",
col = hcl.colors(max(eu$neigh) + 1, "Dark Mint")

)

0 20

35
40

45
50

55
60

65
70 0

1
2
3
4
5
6
8

(Germany truly is the hearth of the EU)

46 CHAPTER 6. SIMPLE OPERATIONS ON VECTORS

Chapter 7

Vector operations

7.1 Loading vectors
Load the vector shapefile of EU countries:
eu <- vect("data/EU/EU.shp")
eu

class : SpatVector
geometry : polygons
dimensions : 27, 11 (geometries, attributes)
extent : -10.38743, 34.39352, 34.57181, 70.0864 (xmin, xmax, ymin, ymax)
source : EU.shp
coord. ref. : lon/lat WGS 84 (EPSG:4326)
names : CNTR_ID NAME_ENGL NAME_FREN ISO3_CODE SVRG_UN CAPT
type : <chr> <chr> <chr> <chr> <chr> <chr>
values : AT Austria Autriche AUT UN Member State Vienna
BE Belgium Belgique BEL UN Member State Brussels
BG Bulgaria Bulgarie BGR UN Member State Sofia
EU_STAT EFTA_STAT CC_STAT NAME_GERM FID
<chr> <chr> <chr> <chr> <chr>
T F F Österreich AT
T F F Belgien BE
T F F Bulgarien BG

This vector contains the polygons of 27 countries in the European Union (EU).
Additionally, an attribute table is attached to it, providing information about
the country name, the ISO3 code, etc. You can see full list of attributes using
names(eu):
names(eu)

47

48 CHAPTER 7. VECTOR OPERATIONS

[1] "CNTR_ID" "NAME_ENGL" "NAME_FREN" "ISO3_CODE" "SVRG_UN" "CAPT"
[7] "EU_STAT" "EFTA_STAT" "CC_STAT" "NAME_GERM" "FID"

Chapter 8

Zonal statistics

Zonal statstics are calcualted for zones, i.e. regions defined either by a cell value
(for rasters) or by polygons (for shapefiles). Zonal calculation are implemented
in terra using zonal().

8.1 Zones as a shapefile
When zones are defined by a shapefile, e.g. the polygons of EU, zonal statistics
are calculated. The syntax is zonal(x, y, fun), where x is the layer with the
values to calculate the statistics of, y is the the layer with the zones, and fun is
the function of the statistic. For example, we can calculate the average value of
the annual temperature for a coutry and see how it varies with latitude:
eu <- vect("data/EU/EU.shp") #load zone layer
eu_centr <- centroids(eu) #get centroids
lat <- geom(eu_centr)[, "y"] #get latitude of centroids

bio1 <- rast("data/wc2.1_10m_bio_1.tif") #load temperature layer

bio1_mean <- zonal(bio1, eu, "mean") #zonal calculation - mean value
bio1_mean <- bio1_mean[[1]] #as vector
plot(

lat, bio1_mean,
pch = 20, cex = 2,
col = "grey50",
xlab = "Latitude",
ylab = "Average temperature"

)

49

50 CHAPTER 8. ZONAL STATISTICS

35 40 45 50 55 60 65

6
8

10
12

14
16

18

Latitude

A
ve

ra
ge

 te
m

pe
ra

tu
re

In the case above x is a raster (it usually is), but this can also be a geometry.

By using another fun we can obtain other statistics. For example, we can get
the minimum and maximum values of each country:
bio1_min <- zonal(bio1, eu, "min") #zonal calculation
bio1_min <- bio1_min[[1]] #as vector
bio1_max <- zonal(bio1, eu, "max") #zonal calculation
bio1_max <- bio1_max[[1]] #as vector
plot(

lat, bio1_mean,
pch = 20, cex = 2,
col = "grey50",
xlab = "Latitude",
ylab = "Average temperature",
ylim = c(min(bio1_min), max(bio1_max))

)
points(

lat, bio1_min,
pch = 6, cex = 2,
col = "dodgerblue3"

)
points(

lat, bio1_max,
pch = 2, cex = 2,
col = "tomato"

)

8.1. ZONES AS A SHAPEFILE 51

35 40 45 50 55 60 65

0
5

10
15

20

Latitude

A
ve

ra
ge

 te
m

pe
ra

tu
re

52 CHAPTER 8. ZONAL STATISTICS

Chapter 9

Mapping

One of the most common goal of GIS is to produce a map of a phenomenon or
process.

As example, we will use data from the Italian National Insitute of Statistics
(ISTAT):

1. Administrative division shapefile (https://www.istat.it/it/archivio/22252
7).

2. GDP of each of the regions, the second administrative division after the
State.

Both of these are in the data/ISTAT/ folder, in the respective subdirectories.

Load the vector shapefile of EU countries:
library(terra)

shapefile of regions
regs <- vect("data/ISTAT/Limiti01012024_g/Reg01012024_g/Reg01012024_g_WGS84.shp")

shapefile of cities
cities <- vect("data/ISTAT/Limiti01012024_g/Com01012024_g/Com01012024_g_WGS84.shp")

noise pollution
noise <- read.csv("data/ISTAT/city-acoustic-noise.csv")
noise <- noise[noise$TIME_PERIOD == 2012,] #only 2012
noise <- noise[noise$TIME_PERIOD != "IT",] #only city level
noise <- noise[noise$TYPE_OF_MONITORING == 1,] #sensor type
noise <- noise[!is.na(noise$OBS_VALUE),] #remove empty
noise <- noise[noise$DATA_TYPE == "MON_LIM",] #monthly limit

not all cities studies: remove not studied

53

https://www.istat.it/it/archivio/222527
https://www.istat.it/it/archivio/222527

54 CHAPTER 9. MAPPING

studied <- intersect(cities$PRO_COM_T, noise$REF_AREA)
cities <- cities[cities$PRO_COM_T %in% studied]
noise <- noise[noise$REF_AREA %in% studied,]

add attribute
cities$noise <- noise$OBS_VALUE[sapply(noise$REF_AREA, \(x) which(cities$PRO_COM_T == x))]
cities <- cities[order(cities$noise)]
cities <- cities[cities$noise > 0] #suspect data

map -----------
noise_vals <- unique(cities$noise)
colors <- colorRampPalette(c("green3", "tomato"))(length(noise_vals))
pal <- c()
for (x in noise_vals) {

pal <- c(pal, rep(colors[which(x == noise_vals)], sum(cities$noise == x)))
}

#plot(regs)
#plot(cities, col = as.numeric(cities$noise), add = TRUE)

regional statistics ----------
regs$noise <- NA
regs$noise_cv <- NA
for (i in seq_along(regs)) {

within <- relate(cities, regs[i], "within")
ids <- which(within, arr.ind = TRUE)[, "row"]
regs$noise[ids] <- mean(cities$noise[ids])
regs$noise_cv[ids] <- sd(cities$noise[ids]) / mean(cities$noise[ids])

}
regs$noise <- as.numeric(regs$noise)
regs$noise_cv <- as.numeric(regs$noise_cv)

layout(matrix(c(2, 3, 1, 1), byrow = TRUE, ncol = 2))
par(mar = c(4, 4, 2, 2))
scatter.smooth(

regs$noise, regs$noise_cv,
pch = 20, cex = 2, frame = FALSE,
xlab = "Noise",
ylab = "Variability (CV)"

)
plot(

regs,
"noise",
col = colorRampPalette(c("green2", "tomato"))(20),
type = "continuous",

55

axes = FALSE,
main = "Noise pollution"

)
plot(

regs,
"noise_cv",
col = colorRampPalette(c("grey90", "dodgerblue2"))(20),
type = "continuous",
axes = FALSE,
main = "Variability (CV)"

)

40 50 60 70

0.
2

0.
4

0.
6

0.
8

Noise

V
ar

ia
bi

lit
y

(C
V

)

40

45

50

55

60

65

70

Noise pollution

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Variability (CV)

	Preface
	Software requirements

	A history of GIS
	Projections
	Geographic vs Projectes CRS

	Vectors
	Geometries in R
	Create geometry in R interactively

	Rasters
	Matrices in R
	Rasters
	Rasters in R
	Raster manipulation
	Raster stacks
	Example: stacks for ecology

	Overview of the data we will use
	Convert a vector to a raster
	Covert a raster to a vector

	Simple operations on vectors
	Perimiter
	Area
	Centroids
	Buffer
	Neighbors of polygons

	Vector operations
	Loading vectors

	Zonal statistics
	Zones as a shapefile

	Mapping

